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This paper presents a rigorous theoretical analysis of the cell-centred finite volume
method for Poisson’s equation. We review the traditional Taylor series expansion
technique which suggests that the cell-centred method is inconsistent on nonuniform
grids, which is not confirmed by numerical experiments. We then present an analysis
of the method which confirms that the solution error does indeed reduce as the cell
size is reduced. This is supported by numerical calculations.c© 2000 Academic Press

1. INTRODUCTION

In the numerical solution of fluid flow problems the cell-centred finite volume approach
is one of the most commonly used techniques; the user defines the locations of the faces
of the computational cells, and the nodes (locations where the variables are calculated) are
positioned in the centre of the cells. This is in contrast to the node-based finite volume method
where the node locations are defined by the user and the cell face locations are derived as
being midway between nodes. The cell-centred finite volume method has the disadvantage
that, on a nonuniform grid, conventional Taylor series truncation error analysis shows
the method to be inconsistent—i.e., the truncation error contains terms that do not vanish
as the grid spacing is progressively reduced. Numerical experiments on model problems
indicate that although the truncation error does indeed behave in this way, the solution error
(the difference between the numerical and exact solutions) does not. In fact the solution
error does decrease as the grid is refined; a Taylor series analysis and numerical examples
are given later.

Recently, S¨uli [6] presented an alternative theoretical analysis of a numerical method for
Poisson’s equation, using concepts from finite element theory. However, despite the method
being called a cell-centred finite volume scheme it is, in fact, a node-based scheme and no
numerical results were presented to display the validity of the analysis. This paper extends
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Süli’s analysis to a truly cell-centred finite volume scheme and also presents numerical
examples to compare to the theoretical predictions. This allows us to show that the analysis,
extended to this cell-centred environment, delivers results that can be obtained in practice,
which has not previously been demonstrated. The notation used in S¨uli’s paper is largely
employed here for consistency.

The model problem to be considered here is the solution of Poisson’s equation on the unit
square with fixed (Dirichlet) boundary conditions. LetÄ = (0, 1)× (0, 1) be our domain
of interest and let∂Ä denote the boundary ofÄ. Then the problem to be considered is to
determineu such that

−∇2u = f in Ä (1)

u = 0 on∂Ä. (2)

The layout of the paper is as follows: We begin by reviewing the Taylor series truncation
error approach to both the node-based and cell-centred finite volume schemes and showing
how this analysis suggests that the cell-centred method is inconsistent; however, numeri-
cal experiments give a similar convergence of the solution error for each of the methods.
We then provide a theoretical analysis of the cell-centred method using techniques from
finite element theory. We show how the finite volume scheme is equivalent to a finite el-
ement scheme and a finite difference scheme. We then demonstrate the stability of the
finite difference scheme (which indicates stability of the finite volume scheme) and con-
vergence of the finite element method (implying convergence of the finite volume scheme).
These results together imply consistency. The bounds on the error determined by the analy-
sis are then compared with numerical results. The necessary mathematical background for
this analysis is found in texts such as [1], [2], and [7].

2. NOTATION

The grid arrangement is illustrated in Fig. 1, which shows the construction of the control
volumes. This is common for both grid systems. In the case of the node-based grid the nodes
are located first and the control volume faces are derived from these: if a node location is
given as(xi , yj ) then the corresponding cell faces are located at

xi−1/2 = xi − hi

2

xi+1/2 = xi + hi+1

2

yj−1/2 = yj − kj

2

yj+1/2 = yj + kj+1

2
,

wherehi , kj are as shown in Fig. 1. In the case of the cell-centred grid we locate the cell
faces first and derive the locations of the nodes; so for a node located at(xi , yj ) we have
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FIG. 1. Grid and control volume construction.

cell face locations defined as

xi−1/2 = xi − h̄i

2

xi+1/2 = xi + h̄i

2

yj−1/2 = yj − k̄ j

2

yj+1/2 = yj + k̄ j

2
,

whereh̄i , k̄ j are as shown in Fig. 1.
We define the partition ofÄ as

Ǟh
x = {xi , i = 1, . . . ,M : x0 = 0, xi − xi−1 = hi , xM = 1}

Ǟh
y = {yj , j = 1, . . . , N : y0 = 0, yj − yj−1 = kj , yN = 1}

and we also define

Äh
x = Ǟh

x ∩ (0, 1]

Äh
y = Ǟh

y ∩ (0, 1]

∂Äh
x = {0, 1} ×Äh

y

∂Äh
y = Äh

x × {0, 1}
Äh = Ä ∩ Ǟh

∂Äh = ∂Ä ∩ Ǟh,

whereǞh is the Cartesian product of the one-dimensional partitionsǞh
x andǞh

y.
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With each grid point(xi , yj ) we associate the finite volumeωi j defined as

ωi j = (xi−1/2, xi+1/2)× (yj−1/2, yj+1/2). (3)

Note that thehi and h̄i are related byhi+1 = 1
2(h̄i + h̄i+1) and similarlykj+1 = 1

2(k̄ j +
k̄ j+1).

We define thesolution error and thetruncation error as follows: if our continuous
problem is defined as

L(u) = 0 (4)

with solutionu and the discrete approximation is denoted by

Lh(u
h) = 0 (5)

with solutionuh then we define the solution error as

Esoln= u− uh (6)

and the truncation error as

Etrunc= L(u)− Lh(u)

= −Lh(u). (7)

We therefore see that the truncation error is simply the residual when the exact solution
is inserted into the discretised equations. Since we do not usually have the exact solution
available we are forced to approximate the truncation error using Taylor series expansions,
replacing the derivative terms appearing in the expansion with finite difference approxima-
tions.

3. TAYLOR SERIES ANALYSIS

3.1. Finite Volume Method on a Node-Based Grid

We first consider the node-based grid as shown in Fig. 1. The node locations are defined
followed by the cell face locations, so that the cell faces lie midway between adjacent nodes.
The finite volume discretisation to Eq. (1) gives

− 1

h̄i

(
∂u

∂x

∣∣∣∣
i+1/2, j

− ∂u

∂x

∣∣∣∣
i−1/2, j

)
− 1

k̄ j

(
∂u

∂y

∣∣∣∣
i, j+1/2

− ∂u

∂y

∣∣∣∣
i, j−1/2

)
= fi, j . (8)

Using two-point central differencing we approximate the derivatives at the cell faces as

∂u

∂x

∣∣∣∣
i+1/2, j

≈ ui+1, j − ui, j

hi+1
(9)

∂u

∂x

∣∣∣∣
i−1/2, j

≈ ui, j − ui−1, j

hi
, (10)

(11)
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with analogous expressions for the other faces. If we expand the nodal values about the
face locations in Taylor series and rewrite the resulting expressions in terms of derivatives
at (i, j ) then we can easily show that we obtain an expression for the truncation error as

2 = 1

12
(hi+1− hi ) uxxx+ 1

24

h3
i+1+ h3

i

hi+1+ hi
uxxxx

+ 1

12

(
kj+1− kj

)
uyyy+ 1

24

k3
j+1+ k3

j

k j+1+ kj
uyyy+ · · · . (12)

The leading term in the truncation error is clearly first order on a nonuniform grid, rising
to second order in the case of a uniform grid. As the grid spacing goes to zero, the truncation
error vanishes and so the approximation is consistent.

3.2. Finite Volume Method on a Cell-Centred Grid

We now consider the cell-centred grid arrangement. The control volume surfaces are
defined first and the nodes are located in the centre of the control volume. The finite volume
discretisation of Poisson’s equation is again

− 1

h̄i

(
∂u

∂x

∣∣∣∣
i+1/2, j

− ∂u

∂x

∣∣∣∣
i−1/2, j

)
− 1

k̄ j

(
∂u

∂y

∣∣∣∣
i, j+1/2

− ∂u

∂y

∣∣∣∣
i, j−1/2

)
= fi, j (13)

and we employ the centred difference approximations to the cell face gradients as before.
Proceeding in a similar way to that for the node-based grid we expand the nodal values
about the cell faces in Taylor series and express the resulting face derivatives in terms of
quantities at the cell centre to obtain the truncation error as

2 = 1

4h̄i

(
h̄2

i+1− h̄2
i

h̄i+1+ h̄i
− h̄2

i − h̄2
i−1

h̄i + h̄i−1

)
uxx + 1

4k̄ j

(
k̄2

j+1− k̄2
j

k̄ j+1+ k̄ j
− k̄2

j − k̄2
j−1

k̄ j + k̄ j−1

)
uyy

+ 1

24h̄i

(
h̄3

i+1+ 3h̄i h̄
2
i+1− 2h̄3

i

h̄i+1+ h̄i
− h̄3

i−1+ 3h̄i h̄
2
i−1− 2h̄3

i−1

h̄i + h̄i−1

)
uxxx

+ 1

24k̄ j

(
k̄3

j+1+ 3k̄ j k̄
2
j+1− 2k̄3

j

k̄ j+1+ k̄ j
− k̄3

j−1+ 3k̄ j k̄
2
j−1− 2k̄3

j−1

k̄ j + k̄ j−1

)
uyyy+ · · · . (14)

Simplifying the coefficient ofuxx and that ofuyy gives

1

4h̄i

(
h̄2

i+1− h̄2
i

h̄i+1+ h̄i
− h̄2

i − h̄2
i−1

h̄i + h̄i−1

)
= 1

4

(
h̄i+1+ h̄i−1

h̄i
− 2

)
(15)

1

4k̄ j

(
k̄2

j+1− k̄2
j

k̄ j+1+ k̄ j
− k̄2

j − k̄2
j−1

k̄ j + k̄ j−1

)
= 1

4

(
k̄ j+1+ k̄ j−1

k̄ j
− 2

)
. (16)

These terms vanish on a uniform grid but not on a nonuniform one. Therefore this analysis
shows that on a uniform grid the truncation error is again of second order but on a nonuniform
grid the approximation is in fact inconsistent, since the leading error term does not vanish
as the grid spacing reduces to zero.
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4. A SIMPLE NUMERICAL EXAMPLE

We now investigate the validity of the Taylor series expansion using a numerical example.
For simplicity we choose a one-dimensional test case. We shall examine the problem

−d2u

dx2
= π2 sin(πx) for x ∈ (0, 1) (17)

u = 0 for x = 0, 1, (18)

which has the exact solution

u = sin(πx). (19)

We discretise this test case on a one-dimensional grid using both the node-based and
cell-centred schemes. To investigate the behaviour of the methods with grid nonuniformity,
the grids are generated as randomly distributed values in(0, 1)with no imposed constraints
on the maximum to minimum cell-size ratio. For the node-based scheme the node locations
are randomly generated before being sorted into ascending order; in the case of the cell-
centred scheme the cell faces are randomly located. In each case the number of points is
chosen as a random variable between 10 and 200. The results are analysed by examining
the maximum errors in the approximation on each grid against the maximum cell size. A
total of 500 grids have been tried for both the node-based and cell-centred schemes, in order
to obtain a reasonable error trend. The behaviour of both schemes with uniform grids has
also been checked as a comparison.

Since we have an exact solution for the problem defined in Eqs. (17) and (18) then we may
employ the solution error (Eq. (6)) and the truncation error definition (Eq. (7)) in assessing
the accuracy of the approximations.

4.1. Uniform Grid Results

To check the behaviour of the two methods for the model problem as a baseline, uniform
grid calculations were run where the control volume sizes were kept constant; the node-
based and cell-centred methods should be identical in this case. The grids were progressively
refined and the variation of the errors with grid size was calculated. As expected the results
for the node-based and cell-centred grids are identical: analysis of the results yields the
solution error varying likeh1.9989 and the truncation error varying likeh1.9976 (whereh is
the cell width) for both the node-based and cell-centred grids. The variations of the solution
and truncation errors for the node-based grid are shown in Fig. 2.

4.2. Nonuniform Grid Results

We now turn our attention to the nonuniform grid case. Here we have employed randomly
distributed grids to remove any bias from systematic grid distributions and to provide a severe
test of the methods. The results for the node-based scheme are shown in Fig. 3. We can see
that the solution error decreases as the maximum cell size goes to zero but that the truncation
error appears to increase; at least there is more scatter in the truncation error results for the
smaller cell sizes. The magnitude of the truncation error is always significantly larger than
that of the solution error. This is not important if the constant of proportionality does not
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FIG. 2. Error distribution versus cell size for the uniform node-based grid.

vary significantly. If we look at the ratio of the solution error to the truncation error (Fig. 4)
we see that it increases as the grid size decreases. The method therefore displays the property
of supra-convergence; i.e., the solution error decreases more rapidly than is implied by the
truncation error. This suggests that for the node-based scheme, the truncation error is not a
reliable estimate of the solution error.

Further analysis of the solution error data of Fig. 3 indicates that the solution error varies
like h2.0667; even eliminating the results for the largest maximum cell sizes still returns
second-order accuracy of the solution error; i.e., the solution error varies like the square of

FIG. 3. Error distribution versus maximum cell size for the node-based grid.
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FIG. 4. Ratio of truncation error to solution error for the node-based grid.

the maximum cell size. Therefore, even though the scheme appears to be formally first-order
accurate on a nonuniform grid from the Taylor series analysis, the solution error shows that
it is in fact second-order accurate.

We now turn to the cell-centred approximation. In Fig. 5 we see the results for the so-
lution error and truncation error again plotted against maximum cell size. The truncation
error results do not decrease with reducing cell size, confirming the Taylor series analy-
sis. However, the solution error results do decrease as the maximum cell size reduces, in
contradiction to the conclusion drawn from the analysis. As a result the ratio of truncation
error to solution error varies significantly as the cell size is reduced (Fig. 6). Analysing the

FIG. 5. Error distribution versus maximum cell size for the cell-centred grid.



CELL-CENTRED FINITE VOLUME METHOD 53

FIG. 6. Ratio of truncation error to solution error for the cell-centred grid.

variation of the solution error as the cell size changes shows that the solution error for the
cell-centred scheme also varies with the square of the cell size. Therefore, in contrast to
the conclusion drawn from the Taylor series analysis we can say thatthe cell-centred finite
volume approximation is not only consistent but is second-order accurate even on these
nonuniform grids.

5. AN ALTERNATIVE ANALYSIS OF THE CELL-CENTRED METHOD

We now turn to an alternative analysis of the cell-centred finite volume method. This
follows the approach used by S¨uli [6] for the node-based grid case, extending it to the
cell-centred method and showing how it is confirmed by numerical experiments.

We restate the finite volume approximation ofu as follows: LetSh be the set of piecewise
bilinear functions defined on the rectangular partition ofǞ induced byǞh. Let Sh

0 ⊂ Sh be
the set of those functions vanishing on∂Ä. The finite volume approximation ofu isuh ∈ Sh

0

satisfying

− 1

h̄i k̄ j

∫
∂ωi j

∂uh

∂n
ds= 1

h̄i k̄ j

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f (x, y) dx dy (20)

for (x, y) ∈ Äh.

5.1. Stability Analysis

In this section we shall demonstrate the stability of the finite difference analogue of our
finite volume approximation, which in turn demonstrates the stability of the finite volume
scheme.

5.1.1. Some definitions.Let us define the discreteH1-norm‖ · ‖1,h as

‖v‖1,h =
(‖v‖2+ |v|21,h)1/2

, (21)
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where‖ · ‖ is the discreteL2-norm overÄh,

‖v‖ = (v, v)1/2 (22)

(v,w) =
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j vi jwi j , (23)

and| · |1,h is the discreteH1-seminorm,

|v|1,h =
(‖1−x v|]2

x + ‖1−y v|]2
y

)1/2
, (24)

where we have

‖v|]2
x = (v, v]x (25)

‖v|]2
y = (v, v]y (26)

(v,w]x =
M∑

i=1

N−1∑
j=1

hi k̄ j vi jwi j (27)

(v,w]y =
M−1∑
i=1

N∑
j=1

h̄i k j vi jwi j . (28)

We define the divided difference operators1+x ,1−x ,1+y ,1−y as

1+x u = ui+1, j − ui j

h̄i
(29)

1−x u = ui j − ui−1, j

hi
(30)

1+y u = ui, j+1− ui j

k̄ j
(31)

1−y u = ui j − ui, j−1

kj
. (32)

We define the discreteH−1-norm as

‖v‖−1,h = sup
|(v,w)|
‖w‖1,h

, (33)

where the supremum is taken over all mesh functionsw 6= 0 onǞh vanishing on∂Äh.

5.2. Stability Analysis of an Equivalent Finite Difference Method

Using the definitions of the previous section we may rewrite the finite volume approxi-
mation given by Eq. (20) as a finite difference scheme onÄh,

−(1+x 1−x +1+y1−y )uh = T11 f in Äh (34)

uh = 0 on∂Äh, (35)
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where we have

(T11 f )i j =
1

h̄i k̄ j

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f (x, y) dx dy. (36)

Let us define the operatorLh by

Lhv = −(1+x 1−x +1+y1−y )v (37)

for mesh functionsv defined onǞh with v = 0 on∂Äh. Then if we take the inner product
of Lhv with v we get

(Lhv, v) = (−(1+x 1−x )v, v)+ (−(1+y1−y )v, v)

=
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j (−1+x 1−x vi j )vi j +
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j (−1+y1−y vi j )vi j

=
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j

(
−1

−
x vi+1, j −1−x vi j

h̄i

)
vi j

+
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j

(
−1

−
y vi+1, j −1−y vi j

k̄i

)
vi j . (38)

Examining the first term on the RHS of Eq. (38) gives

M−1∑
i=1

N−1∑
j=1

h̄i k̄ j

(
−1

−
x vi+1, j −1−x vi j

h̄i

)
vi j

=
N−1∑
j=1

k̄ j

{
−v2, j − v1, j

h2
v1, j + v1, j − v0, j

h1
v1, j − v3, j − v2, j

h3
v2, j + v2, j − v1, j

h2
v2, j +· · ·

}

=
N−1∑
j=1

k̄ j

{
−v1, j − v0, j

h2
(v1, j − v0, j )+−v2, j − v1, j

h2
(v2, j − v1, j )+ · · ·

}

=
M∑

i=1

N−1∑
j=1

hi k̄ j (1
−
x vi j )(1

−
x vi j )

= (1−x v,1−x v]x, (39)

where we have used the fact thatv0, j = 0 andvM, j = 0 by definition. A similar analysis
gives

M−1∑
i=1

N−1∑
j=1

h̄i k̄ j

(
−1

−
y vi+1, j −1−y vi j

k̄ j

)
vi j = (1−y v,1−y v]y (40)
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and so we immediately have

(Lhv, v) = (1−x v,1−x v]x + (1−y v,1−y v]y

= ‖1−x v|]2
x + ‖1−y v|]2

y

= |v|21,h , (41)

where we have used the definitions of Eqs. (24), (25), and (26).
In addition, sincev = 0 on∂Äh then, using Lemma 3.2 in [6], we obtain the relation

‖v‖2 ≤ 1

2
|v|21,h , (42)

giving

‖v‖2 ≤ 1

2
(Lhv, v), (43)

and therefore

‖v‖1,h =
(‖v‖2+ |v|21,h)1/2 ≤

(
3

2
|v|21,h

)1/2

, (44)

immediately yielding

‖v‖21,h ≤
3

2
(Lhv, v). (45)

Now theH−1-norm ofLhv is defined, for somew, by

‖Lhv‖−1,h = sup
|(Lhv,w)|
‖w‖1,h . (46)

Sincev = 0 on∂Äh we may say that

(Lhv, v) ≤ ‖v‖1,h ‖Lhv‖−1,h (47)

and finally

‖v‖1,h ≤
3

2
‖Lhv‖−1,h. (48)

This negative norm result indicates that the finite difference method is stable and hence
so is the finite volume method by the following analysis.

For the finite difference method to be stable, we require‖(Lh)−1‖ to be uniformly
bounded. From Eq. (48) we have demonstrated that‖v‖1,h ≤ C‖Lhv‖−1,h for someC ≥ 0
for mesh functionsv and so this implies the uniform boundedness of‖(Lh)−1‖ (see for
example [7]).

Uniqueness of the solution follows by application of Theorem 3.2 from [6].
To estimate a bound onuh, we setv = uh in Eq. (48), sinceuh = 0 on∂Äh, to give

‖uh‖1,h ≤ 3

2
‖Lhuh‖−1,h (49)

and so

‖uh‖1,h ≤ 3

2
‖T11 f ‖−1,h. (50)
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5.3. Convergence Analysis

In this section we shall demonstrate the convergence of the finite volume scheme. In this
analysis we shall use the concept of anisotropic Sobolev spaces on rectangular subdomains
of R2, whereR is the space of real numbers. Letω = (a, b)× (c, d) and letr, s ∈ R,
with r, s> 0. ThenHr,s(ω) is the anisotropic Sobolev space consisting of all functions
u ∈ L2(ω) such that

|u|Hr,0(ω) =
{∫ d

c
|u(·, y)|2Hr (a,b) dy

}1/2

<∞ (51)

|u|H0,s(ω) =
{∫ b

a
|u(x, ·)|2Hs(c,d) dx

}1/2

<∞. (52)

We note thatHr,s(ω) is a Banach space equipped with the norm

‖u‖Hr,s(ω) =
{‖u‖2l2(ω) + |u|2Hr,0(ω) + |u|2H0,s(ω)

}1/2
. (53)

Let us define the global error in the approximation asz= u− uh. Then

−(1+x 1−x +1+y1−y )z = −(1+x 1−x +1+y1−y )(u− uh)

= −(1+x 1−x +1+y1−y )u− T11 f

= T11

(
∂2u

∂x2
+ ∂

2u

∂y2

)
− (1+x 1−x +1+y1−y )u

=
(

T11
∂2u

∂x2
−1+x 1−x u

)
+
(

T11
∂2u

∂y2
−1+y1−y u

)
. (54)

Now from the definitions,(
T11
∂2u

∂x2

)
i j

= 1

h̄i k̄ j

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∂2u

∂x2
dx dy

= 1

h̄i k̄ j

∫ yj+1/2

yj−1/2

{
∂u

∂x

(
xi+1/2, y

)− ∂u

∂x

(
xi−1/2, y

)}
dy

= 1+x
(

T−01
∂u

∂x

)
i j

, (55)

where we defineT−01 by

(T−01w)i j =
1

k̄ j

∫ yj+1/2

yj−1/2

w
(
xi−1/2, y

)
dy. (56)

We may defineT−10 in a similar way from analysis of the(T11∂
2u/∂y2)i j term.

We may therefore write the equation for the global error as

−(1+x 1−x +1+y1−y )z = 1+x η1+1+y η2 in Äh (57)

z = 0 on∂Äh, (58)
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where

η1 = T−01
∂u

∂x
−1−x u (59)

η2 = T−10
∂u

∂y
−1−y u. (60)

Applying the estimates derived in the stability analysis gives

‖z‖1,h ≤ 3

2
‖1+x η1+1+y η2‖−1,h. (61)

Now if w is a mesh function defined on̄Äh such thatw = 0 on∂Äh then

−(1+x η1+1+y η2, w) = −
M−1∑
i=1

N−1∑
j=1

h̄i k̄ j (1
+
x η1+1+y η2)i jwi j

= −
N−1∑
j=1

k̄ j {((η1)2, j − (η1)1, j )w1, j + ((η1)3, j − (η1)2, j )w2, j + · · ·}

−
M−1∑
i=1

h̄i {((η2)i,2− (η2)i,1)wi,1+ ((η2)i,3− (η2)i,2)wi,2+ · · ·}

=
N−1∑
j=1

k̄ j {(η1)1, j (w1, j − w0, j )+ (η1)2, j (w2, j − w1, j )+ · · ·}

+
M−1∑
i=1

h̄i {(η2)i,1(wi,1− wi,0)+ (η2)i,2(wi,2− wi,1)+ · · ·}

=
M∑

i=1

N−1∑
j=1

hi k̄ j (η1)i j1
−
x wi j +

M−1∑
i=1

N∑
j=1

h̄i k j (η2)i j1
−
ywi j

= (η1,1
−
x w]x + (η2,1

−
yw]y. (62)

From the definition of the norm‖ · ‖−1,h we may see that

‖1+x η1+1+y η2‖−1,h ≤ ‖η1|]x + ‖η2|]y (63)

and so

‖z‖1,h = ‖u− uh‖1,h ≤ 3

2
(‖η1|]x + ‖η2|]y). (64)

We must now estimate the RHS terms in Eq. (64). Let us consider theη1 term first:

(η1)i j = 1

k̄ j

∫ yj+1/2

yj−1/2

∂u

∂x

(
xi−1/2, y

)
dy− ui j − ui−1, j

hi

= 1

k̄ j

∫ yj+1/2

yj−1/2

∂u

∂x

(
xi−1/2, y

)
dy− 1

hi

∫ xi

xi−1

∂u

∂x
(x, yj ) dx

= 1

hi k̄ j

∫ xi

xi−1

∫ yj+1/2

yj−1/2

{
∂u

∂x

(
xi−1/2, y

)− ∂u

∂x
(x, yj )

}
dx dy. (65)
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If we split η1 asη1 = η11+ η12, where

(η11)i j = 1

hi k̄ j

∫ xi

xi−1/2

∫ yj+1/2

yj−1/2

{
∂u

∂x

(
xi−1/2, y

)− ∂u

∂x
(x, yj )

}
dx dy (66)

(η12)i j = 1

hi k̄ j

∫ xi−1/2

xi−1

∫ yj+1/2

yj−1/2

{
∂u

∂x

(
xi−1/2, y

)− ∂u

∂x
(x, yj )

}
dx dy, (67)

then we must estimate the termsη11 andη12.
Let us first considerη11. We may change variables so that

x = xi−1/2+ sh̄i , 0≤ s ≤ 1

2
(68)

y = yj + t k̄ j , −1

2
≤ t ≤ 1

2
(69)

and define the function ˜v by

ṽ(s, t) = hi
∂u

∂x
(x, y). (70)

Then

(η11)i j =
1

hi k̄ j

∫ 1/2

0

∫ 1/2

−1/2

{
1

hi
ṽ(0, t)− 1

hi
ṽ(s, 0)

}
h̄i k̄ j ds dt

= h̄i

h2
i

∫ 1/2

0

∫ 1/2

−1/2
{ṽ(0, t)− ṽ(s, 0)} ds dt

= h̄i

h2
i

η̃11, (71)

where

η̃11 =
∫ 1/2

0

∫ 1/2

−1/2
{ṽ(0, t)− ṽ(s, 0)} ds dt. (72)

Now η̃11 is a linear functional (i.e., a linear mapping to the real numbers) with argument ˜v,
defined onHσ (ω̃) (with σ >1/2) where

ω̃ =
(

0,
1

2

)
×
(
−1

2
,

1

2

)
. (73)

Sinceσ > 1/2, we may view ˜η11 as a Trace operator, a continuous linear map, from
Hσ (ω̃)→ R and so

|η̃11| ≤ C‖ṽ‖Hσ (ω̃) , σ >
1

2
(74)

since| · | is the norm onR (see [7], Section 8 and Theorem 8.1). Therefore ˜η11 is bounded
(ṽ must remain finite) and sublinear (that is, ˜η11 increases at best as rapidly as its ar-
gument ˜v).
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We have now established the properties required to allow us to apply Theorem 4.2 from
[6] to obtain

|η̃11| ≤ C
(|ṽ|2H0,σ (ω̃) + |ṽ|2Hσ,0(ω̃)

)1/2
,

1

2
< σ ≤ 2. (75)

By definition of the Sobolev seminorms we have

|ṽ|2H0,σ (ω̃) =
∫ 1/2

0
|ṽ(s, ·)|2Hσ (−1/2,1/2) ds (76)

|ṽ(s, ·)|2Hσ (−1/2,1/2) =
∫ 1/2

−1/2

∣∣Dσ
t ṽ
∣∣2 dt, (77)

whereDσ
t is the generalised derivative of orderσ with respect tot . Now changing back to

the original variables gives

ṽ(s, t) = hi
∂u

∂x
(x, y) (78)

dx = h̄i ds (79)

dy = k̄ j dt, (80)

and so

Dσ
t ṽ = hi k̄

σ

j Dσ
y

(
∂u

∂x

)
. (81)

This gives us

|ṽ(s, ·)|2Hσ (−1/2,1/2) =
h2

i k̄2σ
j

k̄ j

∫ yj+1/2

yj−1/2

∣∣∣∣Dσ
y

(
∂u

∂x

)∣∣∣∣2 dy, (82)

and so

|ṽ|2H0,σ (ω̃) =
h2

i k̄2σ
j

h̄i k̄ j

∫ xi

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣Dσ

(
∂u

∂x

)∣∣∣∣2 dx dy (83)

= h2
i k̄2σ−1

j

h̄i

∣∣∣∣∂u

∂x

∣∣∣∣
H0,σ (ω+i j )

, (84)

whereω+i j = (xi−1/2, xi )× (yj−1/2, yj+1/2).
In a similar way, we obtain

|ṽ|2Hσ,0(ω̃) =
∫ 1/2

−1/2
|ṽ(·, t)|2Hσ (0,1/2) dt (85)

|ṽ(·, t)|2Hσ (0,1/2) =
∫ 1/2

0

∣∣Dσ
s ṽ
∣∣2 ds. (86)

Returning to the original variables again gives

Dσ
s ṽ = hi h̄

σ

i Dσ
x

(
∂u

∂x

)
, (87)
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yielding

|ṽ(·, t)|2Hσ (0,1/2) =
h2

i h̄2σ
i

h̄i

∫ xi

xi−1/2

∣∣∣∣Dσ
x

(
∂u

∂x

)∣∣∣∣2 dx, (88)

and so

|ṽ|2Hσ,0(ω̃) =
h2

i h̄2σ
i

h̄i k̄ j

∫ xi

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣Dσ

(
∂u

∂x

)∣∣∣∣2 dx dy (89)

= h2
i h̄2σ−1

i

k̄ j

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

, (90)

whereω+i j = (xi−1/2, xi )× (yj−1/2, yj+1/2) again. Therefore

|η̃11|2 ≤ C

(
h2

i k̄2σ−1
j

h̄i

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω+i j )

+ h2
i h̄2σ−1

i

k̄ j

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

)
, (91)

and so

|(η11)i j |2 ≤ C

(
h2

i k̄2σ−1
j

h2
i

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω+i j )

+ h̄2σ+1
i

h2
i k̄ j

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

)
. (92)

If we now turn our attention to(η12)i j then we may change variables to

x = xi−1/2+ sh̄i−1, −1

2
≤ s ≤ 0 (93)

y = yj + t k̄ j , −1

2
≤ t ≤ 1

2
(94)

and again define the function ˜v by

ṽ(s, t) = hi
∂u

∂x
(x, y). (95)

We therefore arrive at an analogous estimate forη12,

|(η12)i j |2 ≤ C

(
h̄2

i−1k̄2σ−2
j

h2
i

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω−i j )

+ h̄2σ+1
i−1

h2
i k̄ j

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω−i j )

)
, (96)

whereω−i j = (xi−1, xi−1/2)× (yj−1/2, yj+1/2).
If we letωi j = ω+i j ∪ ω−i j then we haveÄ = ∪i j ωi j . Now the square of the Sobolev semi-

norm displays the property of super-additivity; so ifω1, ω2 are mutually disjoint Lebesgue
measurable sets then

|u|2Hr,s(ω1)
+ |u|2Hr,s(ω2)

≤ |u|2Hr,s(ω1∪ω2)
. (97)
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Therefore

∑
i, j

{∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω+i j )

+
∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω−i j )

}
≤
∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (Ä)

(98)

∑
i, j

{∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

+
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω−i j )

}
≤
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(Ä)

. (99)

Now sinceη11, η12 represent integrals over disjoint sets whose union represents the
domain of integration forη1, we have

|η1|2 = |η11|2+ |η12|2 , (100)

and so from Eqs. (92) and (96) we obtain

|(η1)i j |2 ≤ C
k̄2σ−1

j

h2
i k̄ j

(
h̄2

i

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω+i j )

+ h̄2
i−1

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω−i j )

)

+C
1

h2
i k̄ j

(
h̄2σ+1

i

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

+ h̄2σ+1
i−1

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω−i j )

)
(101)

From the definition of‖ · |]x we have

‖η1|]2
x =

M∑
i=1

N−1∑
j=1

hi k̄ j (η1)
2
i j , (102)

and so

‖η1|]2
x = C

M∑
i=1

N−1∑
j=1

k̄2σ−1
j

hi

(
h̄2

i

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω+i j )

+ h̄2
i−1

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (ω−i j )

)

+C
M∑

i=1

N−1∑
j=1

1

hi

(
h̄2σ+1

i

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω+i j )

+ h̄2σ+1
i−1

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(ω−i j )

)

≤ C
h̄2σ+1

h

(∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (Ä)

+
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(Ä)

)
, (103)

where h̄ = maxi, j (h̄i , k̄ j ) and h = maxi, j (hi ). We may, in fact, go further and leth̃ =
max(h, h̄) and then set

‖η1|]2
x ≤ Ch̃2σ

(∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (Ä)

+
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(Ä)

)
. (104)

Similarly, we may determine that

‖η2|]2
y ≤ Ch̃2σ

(∣∣∣∣∂u

∂y

∣∣∣∣2
H0,σ (Ä)

+
∣∣∣∣∂u

∂y

∣∣∣∣2
Hσ,0(Ä)

)
(105)
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if we defineh̃ = maxi, j (hi , kj , h̄i , k̄ j ). From the definition of the norm on the anisotropic
Sobolev space

∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (Ä)

+
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(Ä)

≤
∥∥∥∥∂u

∂x

∥∥∥∥2

Hσ,σ (Ä)

(106)

∣∣∣∣∂u

∂y

∣∣∣∣2
H0,σ (Ä)

+
∣∣∣∣∂u

∂y

∣∣∣∣2
Hσ,0(Ä)

≤
∥∥∥∥∂u

∂y

∥∥∥∥2

Hσ,σ (Ä)

. (107)

But sinceσ > 0 we haveHσ,σ (Ä) ≡ Hσ (Ä) and‖ · ‖Hσ,σ (Ä) ≡ ‖ · ‖Hσ (Ä); consequently

‖η1|]2
x ≤ Ch̃2σ

∥∥∥∥∂u

∂x

∥∥∥∥2

Hσ (Ä)

(108)

‖η2|]2
y ≤ Ch̃2σ

∥∥∥∥∂u

∂y

∥∥∥∥2

Hσ (Ä)

, (109)

and thus we have

‖u− uh‖1,h ≤ Ch̃σ
(∥∥∥∥∂u

∂x

∥∥∥∥
Hσ (Ä)

+
∥∥∥∥∂u

∂y

∥∥∥∥
Hσ (Ä)

)
,

1

2
< σ ≤ 2, (110)

whereC is some constant,C > 0.
We therefore have a bound on the error in terms of the derivatives ofu. We would like to

express this bound in terms of a norm ofu itself. We will now reexpress Eq. (110) in this way.
From the definition of the Sobolev seminorm, recalling thatÄ = (0, 1)× (0, 1), we have

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ,0(Ä)

=
∫ 1

0

∣∣∣∣∂u

∂x
(·, y)

∣∣∣∣
Hσ (0,1)

dy

=
∫ 1

0

∑|α|=σ
∥∥∥∥Dα ∂u

∂x
(x, y)

∥∥∥∥2

L2(0,1)

 dy

=
∫ 1

0

∑|α|=σ
∫ 1

0

∣∣∣∣Dα ∂u

∂x
(x, y)

∣∣∣∣2 dx

 dy

=
∑
|α|=σ

∫ 1

0

∫ 1

0

∣∣∣∣Dα ∂u

∂x
(x, y)

∣∣∣∣2 dx dy

=
∑
|α|=σ

∫
Ä

∣∣∣∣Dα ∂u

∂x
(x, y)

∣∣∣∣2 dÄ

=
∑
|α|=σ

∥∥∥∥Dα ∂u

∂x

∥∥∥∥2

L2(Ä)

=
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ (Ä)

. (111)
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Similarly we obtain ∣∣∣∣∂u

∂x

∣∣∣∣2
H0,σ (Ä)

=
∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ (Ä)

(112)

with similar relations for the seminorms of∂u
∂y . In addition,

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ (Ä)

=
∑
|α|=σ

∫
Ä

∣∣∣∣Dα ∂u

∂x

∣∣∣∣2 dÄ

=
∑
|α|=σ

∫
Ä

|D1+αu|2 dÄ

= |u|2H1+σ (Ä) (113)

and ∣∣∣∣∂u

∂y

∣∣∣∣2
Hσ (Ä)

= |u|2H1+σ (Ä) . (114)

Therefore

‖η1|]2
x ≤ Ch̃2σ

∣∣∣∣∂u

∂x

∣∣∣∣2
Hσ (Ä)

= Ch̃2σ |u|2H1+σ (Ä) (115)

‖η2|]2
y ≤ Ch̃2σ

∣∣∣∣∂u

∂y

∣∣∣∣2
Hσ (Ä)

= Ch̃2σ |u|2H1+σ (Ä) , (116)

and so we finally conclude that

‖u− uh‖1,h ≤ Ch̃σ |u|H1+σ (Ä) ,
1

2
< σ ≤ 2. (117)

This result gives us a bound on the error of the finite volume approximation in terms of
a norm of the exact solution itself. Since the exponent of the grid-spacing term is bounded
away from 0 and the norm of the analytic solution is finite we may conclude that the error
will decrease to zero in the limit of zero grid spacing; i.e., the cell-centred approximation
is consistent.

We have therefore proved our central result on the consistency of the approximation. In
the next section we shall examine some numerical results that follow from this analysis.

6. A TWO-DIMENSIONAL EXAMPLE

6.1. Analytic Solution

If we consider the model problem defined by Eq. (1) with Dirichlet boundary conditions
as in (2) then takingf = 2π2 sin(πx) cos(πy) andÄ = (0, 1)× (0, 1) gives the analytic
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solution

u(x, y) = sin(πx) cos(πy). (118)

Given this solution we may calculate the seminorm|u|H1+σ (Ä) for the casesσ = 1 and
σ = 2; these are easily shown to be

|u|H2(Ä) = π2

√
3

4
(119)

and

|u|H3(Ä) = π3. (120)

6.2. Numerical Results

In the calculations randomly distributed Cartesian grids have been used to solve the
model problem. We have allowed a random number of grid lines to be distributed at random
locations to avoid any bias of the results from choosing particular nonuniform grid distri-
butions. A total of 1000 cases have been calculated to provide a reasonable sample size.
As for the one-dimensional case there were no constraints on the maximum to minimum
cell-size ratio. In each case we have calculated the maximum cell size, which corresponds
to h̃ in Eq. (117). We have also calculated the maximum solution error‖u− uh‖∞ and the
H1-norm of the solution error‖u− uh‖1,h; we wish to demonstrate both that the analysis
predicts a behaviour of theH1-norm that is obtained in practice and that theH1-norm
behaves in a similar manner to the maximum norm. It is after all the maximum norm that is
usually calculated in assessing the accuracy of a numerical solution against known values.

In Fig. 7 we plot the maximum solution error against the maximum cell size. We can
see that as the cell size decreases the solution error decreases as well with all of the data

FIG. 7. Two-dimensional example showing variation of maximum solution error with maximum cell size.
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FIG. 8. Two-dimensional example showing variation ofH 1-norm with maximum cell size.

points clustered around one line. Strangely this distribution appears smoother than the
corresponding result in the one-dimensional case (Fig. 5), although the procedure is the
same in both one- and two-dimensional cases. Calculating a best-fit line from the data
yields that the solution error varies withh̃1.728, a convergence rate slightly degraded from
the one-dimensional case considered above but still close to theh̃2 convergence expected
from the uniform grid case. This is in contrast to the prediction of the truncation error
analysis using Taylor series expansions presented in Section 3.2 where the approximation
is apparently inconsistent.

Calculating theH1-norm of the solution error for each example gives the results in Fig. 8.
We can see that theH1-norm tends to zero as the maximum cell size reduces. Applying a
best-fit curve again shows that the calculations predict theH1-norm varying withh̃1.0306.
TheH1-norm therefore converges as the grid size decreases. This exponent on the maximum
cell size is in the range predicted by the convergence analysis and so confirms the correctness
of the approach in Section 4. With the approximation ofσ ≈ 1 in Eq. (117) and the value
of |u|H2(Ä) from Eq. (119) we can also calculate a bound on the constantC. We plot the
limiting value ofC to give equality in Eq. (117) in Fig. 9. We see that, apart from one outlier
point atC ≈ 0.17, we can estimate a limit ofC ≈ 0.12 for this problem. We can see thatC
does not change with grid size as expected.

7. DISCUSSION

The results of the numerical example presented in the previous section have confirmed
the theoretical analysis. TheH1-norm of the solution error does indeed converge to zero
as the maximum cell size decreases and at a rate consistent with the range predicted by
the analysis. Although theH1-norm of the solution error converges less rapidly than the
maximum norm shown in Fig. 7 we still have a useful indication of the error behaviour
of the approximation. In particular we have presented an analysis of the cell-centred finite
volume method which reflects the behaviour seen in numerical experiments such as those in
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FIG. 9. Two-dimensional example showing value of the constant in Eq. (117) withσ = 1.

Section 3.2 and have confirmed it by example calculations. This analysis therefore provides
us with a firm theoretical foundation for the use of cell-centred grids for diffusion problems.
While the familiar Taylor series truncation error analysis suggested that the method was
inconsistent, which was not supported by numerical evidence of the convergence of the
solution error, we have now been able to demonstrate the convergence of the approximation
by more sophisticated means.

The question now arises of whether this analysis can be extended to more complex
convection–diffusion equations on more general grids. Some work has been performed in
this area already: S¨uli has analysed the effects of grid distortion on finite volume methods
in [5] and has examined the convection–diffusion equation in [4]. However, this work con-
centrated on the cell vertex finite volume method and was restricted to uniform rectangular
grids with restrictions on the velocity field. Another analysis of the convection–diffusion
equation, this time with the cell-centred grid formulation and various upwind schemes for
the convection terms, was presented in [3]. This analysis was again performed for uniform
grids. An analysis of the convection–diffusion equation on nonuniform cell-centred grids
will require a more complex and lengthy exposition than that presented here for the diffusion
equation.

8. CONCLUSIONS

We have presented a theoretical analysis of the cell-centred finite volume method for
the diffusion equation in an attempt to explain the discrepancy between the convergence
of the method observed in numerical experiments and the behaviour implied by the Taylor
series truncation error analysis. By rewriting the finite volume method as an equivalent finite
difference method we were able to prove stability. By invoking concepts from functional
analysis we were able to demonstrate convergence of the method in theH1-norm. Together
these results give the consistency of the method. We were able to demonstrate the accuracy
of the theoretical analysis by a numerical example which yielded superlinear convergence
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of both the maximum norm and theH1-norm of the solution error; theH1-norm result
confirms the theoretical analysis. While more work is required to extend this approach
to the convection–diffusion equation on nonuniform cell-centred grids the present work
is valuable because it provides a theoretical underpinning to the evidence of numerical
experiments, showing that the cell-centred method is consistent for the diffusion equation
in contrast to the results of Taylor series truncation error analysis.
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