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This paper presents a rigorous theoretical analysis of the cell-centred finite volume
method for Poisson’s equation. We review the traditional Taylor series expansion
technigue which suggests that the cell-centred method is inconsistent on nonuniform
grids, which is not confirmed by numerical experiments. We then present an analysis
of the method which confirms that the solution error does indeed reduce as the cell
size is reduced. This is supported by numerical calculatioR%ooo Academic Press

1. INTRODUCTION

In the numerical solution of fluid flow problems the cell-centred finite volume approa
is one of the most commonly used techniques; the user defines the locations of the f
of the computational cells, and the nodes (locations where the variables are calculated
positioned inthe centre of the cells. Thisisin contrast to the node-based finite volume met
where the node locations are defined by the user and the cell face locations are derive
being midway between nodes. The cell-centred finite volume method has the disadvan
that, on a nonuniform grid, conventional Taylor series truncation error analysis shc
the method to be inconsistent—i.e., the truncation error contains terms that do not va
as the grid spacing is progressively reduced. Numerical experiments on model probl
indicate that although the truncation error does indeed behave in this way, the solution e
(the difference between the numerical and exact solutions) does not. In fact the solu
error does decrease as the grid is refined; a Taylor series analysis and numerical exar
are given later.

Recently, 8li [6] presented an alternative theoretical analysis of a numerical method
Poisson’s equation, using concepts from finite element theory. However, despite the me
being called a cell-centred finite volume scheme it is, in fact, a node-based scheme an
numerical results were presented to display the validity of the analysis. This paper exte
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46 JONES AND MENZIES

Sili's analysis to a truly cell-centred finite volume scheme and also presents numeri
examples to compare to the theoretical predictions. This allows us to show that the anal
extended to this cell-centred environment, delivers results that can be obtained in prac
which has not previously been demonstrated. The notation usediis [@per is largely
employed here for consistency.

The model problem to be considered here is the solution of Poisson’s equation on the
square with fixed (Dirichlet) boundary conditions. et= (0, 1) x (0, 1) be our domain
of interest and led 2 denote the boundary @. Then the problem to be considered is to
determineu such that

—Vu=f inQ (1)
u=20 onog. (2)

The layout of the paper is as follows: We begin by reviewing the Taylor series truncati
error approach to both the node-based and cell-centred finite volume schemes and shc
how this analysis suggests that the cell-centred method is inconsistent; however, nun
cal experiments give a similar convergence of the solution error for each of the methc
We then provide a theoretical analysis of the cell-centred method using techniques fi
finite element theory. We show how the finite volume scheme is equivalent to a finite
ement scheme and a finite difference scheme. We then demonstrate the stability of
finite difference scheme (which indicates stability of the finite volume scheme) and cc
vergence of the finite element method (implying convergence of the finite volume schen
These results together imply consistency. The bounds on the error determined by the at
sis are then compared with numerical results. The necessary mathematical backgroun
this analysis is found in texts such as [1], [2], and [7].

2. NOTATION

The grid arrangement is illustrated in Fig. 1, which shows the construction of the cont
volumes. This is common for both grid systems. In the case of the node-based grid the n
are located first and the control volume faces are derived from these: if a node locatio
given as(x;, y;) then the corresponding cell faces are located at

Xi = X il
i—1/2 — A 2
h;
Xit12 = X + —|2+1
Ki
Yi-12=Yi—
Kj+1
Yiti2 =Y + 12+ ,

whereh;, k; are as shown in Fig. 1. In the case of the cell-centred grid we locate the ¢
faces first and derive the locations of the nodes; so for a node locatgd gt) we have
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FIG. 1. Grid and control volume construction.

cell face locations defined as

Xi—1/2 = Xi h
i—1/2 = A 2
X1/ = X + 0
i+1/2 = Xi >
K;j

Yi-12=Yj — 2
3

itz =Yi+ 5

whereh;, k; are as shown in Fig. 1.
We define the partition of2 as
Q= {x,i=1...,M:xg=0,% —X_1=hi,xy =1}
O ={y;.i=1....N:yo=0y —y_1=k.,yn=1}
and we also define
Qh =a"n(o,1]
Q) =ahn(0.1]
IQf = (0,1} x Q)
9Ql = QF x {0, 1}
Q"=nqQ"
Q" =N Q"

whereQ" is the Cartesian product of the one-dimensional partitiofhand <.
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With each grid pointx;, y;) we associate the finite volunag; defined as

wij = (Xi—1/2, Xi+172) X (Yj-1/2, Yj+1/2)- 3
Note that theh; andh; are related by = %(H. + ﬁi+1) and similarlykj1 = %(Ej +
Kj+1).
We define thesolution error and thetruncation error as follows: if our continuous
problem is defined as

Lu)=0 (4)
with solutionu and the discrete approximation is denoted by
Lhu™) =0 (5)
with solutionu” then we define the solution error as
Esoln= U —u" (6)
and the truncation error as

Etrune = L(U) — Lp(U)
= —Ln(u). (7)
We therefore see that the truncation error is simply the residual when the exact solu
is inserted into the discretised equations. Since we do not usually have the exact solt
available we are forced to approximate the truncation error using Taylor series expansi

replacing the derivative terms appearing in the expansion with finite difference approxir
tions.

3. TAYLOR SERIES ANALYSIS

3.1. Finite Volume Method on a Node-Based Grid

We first consider the node-based grid as shown in Fig. 1. The node locations are def
followed by the cell face locations, so that the cell faces lie midway between adjacent noc
The finite volume discretisation to Eq. (1) gives

1/ du 1/(adu
_1(du _1(au —f;. ®
hi \ 9x i—1/2,] kj \ 9y ij-1/2

Using two-point central differencing we approximate the derivatives at the cell faces as

ou
aX

au
ij+12 9y

i+1/2,]

au o Uit — Ui ©)
X iy, hita

ou Uij — Ui_1,

ou ~ Ji i—1j ’ (10)
IXi_1/2,] hi

11)
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with analogous expressions for the other faces. If we expand the nodal values abou
face locations in Taylor series and rewrite the resulting expressions in terms of derivat
at (i, j) then we can easily show that we obtain an expression for the truncation error a
1 1h3,+h

®=—(h1—h)u — Ty
12( i+1 |) XXX+24hi+1+hi XXXX

3 3

1 Kis +K;

———Uu 12
24kj+1+kj yyy + (12)

1
T (Kjr2 = kj) uyyy +
The leading term in the truncation error is clearly first order on a nonuniform grid, risir
to second order in the case of a uniform grid. As the grid spacing goes to zero, the trunce

error vanishes and so the approximation is consistent.

3.2. Finite Volume Method on a Cell-Centred Grid

We now consider the cell-centred grid arrangement. The control volume surfaces
defined first and the nodes are located in the centre of the control volume. The finite volt
discretisation of Poisson’s equation is again

1(9 1(9
I B =f; (13)
hi \ 9x i-1/2, kj ay i,j—1/2

and we employ the centred difference approximations to the cell face gradients as be
Proceeding in a similar way to that for the node-based grid we expand the nodal val
about the cell faces in Taylor series and express the resulting face derivatives in ternr
guantities at the cell centre to obtain the truncation error as

2 2 2 2 P2 2 2 2
O = 1 <hi+l_hi h _hil> 1 <kj+1_kj kj _kj—1>u
= vy

ou au

it12j  OX ij+12 9y

- — u +_ —_
an \ higa+h hi+hiog )7 Ak \ Kk Kk

n 1 (b, +3nih?, —2h _ h, +3nh, —2h7 u
24h; hij1+h hi +hi_1 o

+ 1 k—sj+1"‘3EJE1?+1_ZEJ3 k—3171+3EJE1271_2E?71 T (14)
24kj kj+1+ k]‘ k]‘ “ij—l vy ’

Simplifying the coefficient ofi,x and that ofuyy gives

1 ﬁﬁl—ﬁ?_ﬁf—ﬁil =}<Hi+1+ﬁi—1_2> (15)
4h; \ hjy 1+ h hi +hi_1 4 hi

2 1,2 2 1,2 o N
i ki""l_ kj _ ki — kj—l — }(ki-‘rl‘i‘kj—l _ 2) (16)
4kj kj+1+kj kj +kj,1 4 kj '

These terms vanish on a uniform grid but not on a nonuniform one. Therefore this anal
shows that on a uniform grid the truncation error is again of second order but on a nonunif
grid the approximation is in fact inconsistent, since the leading error term does not var
as the grid spacing reduces to zero.
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4. A SIMPLE NUMERICAL EXAMPLE

We now investigate the validity of the Taylor series expansion using a numerical exam|
For simplicity we choose a one-dimensional test case. We shall examine the problem

d?u

5 = n?sin(rx)  forx € (0, 1) 17)
u=20 forx =0, 1, (18)

which has the exact solution
u = sin(zx). (29)

We discretise this test case on a one-dimensional grid using both the node-based
cell-centred schemes. To investigate the behaviour of the methods with grid nonuniforn
the grids are generated as randomly distributed valug; i) with no imposed constraints
on the maximum to minimum cell-size ratio. For the node-based scheme the node locat
are randomly generated before being sorted into ascending order; in the case of the
centred scheme the cell faces are randomly located. In each case the number of poil
chosen as a random variable between 10 and 200. The results are analysed by exarr
the maximum errors in the approximation on each grid against the maximum cell size
total of 500 grids have been tried for both the node-based and cell-centred schemes, in «
to obtain a reasonable error trend. The behaviour of both schemes with uniform grids
also been checked as a comparison.

Since we have an exact solution for the problem defined in Egs. (17) and (18) thenwe i
employ the solution error (Eg. (6)) and the truncation error definition (Eq. (7)) in assess
the accuracy of the approximations.

4.1. Uniform Grid Results

To check the behaviour of the two methods for the model problem as a baseline, unift
grid calculations were run where the control volume sizes were kept constant; the nc
based and cell-centred methods should be identical in this case. The grids were progress
refined and the variation of the errors with grid size was calculated. As expected the res
for the node-based and cell-centred grids are identical: analysis of the results yields
solution error varying liken298% and the truncation error varying like-%°7¢ (whereh is
the cell width) for both the node-based and cell-centred grids. The variations of the solut
and truncation errors for the node-based grid are shown in Fig. 2.

4.2. Nonuniform Grid Results

We now turn our attention to the nonuniform grid case. Here we have employed randor
distributed grids to remove any bias from systematic grid distributions and to provide a se\
test of the methods. The results for the node-based scheme are shown in Fig. 3. We ca
that the solution error decreases as the maximum cell size goes to zero but that the trunc
error appears to increase; at least there is more scatter in the truncation error results fc
smaller cell sizes. The magnitude of the truncation error is always significantly larger t
that of the solution error. This is not important if the constant of proportionality does n
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FIG. 2. Error distribution versus cell size for the uniform node-based grid.

vary significantly. If we look at the ratio of the solution error to the truncation error (Fig.
we see thatitincreases as the grid size decreases. The method therefore displays the pr
of supra-convergence; i.e., the solution error decreases more rapidly than is implied by
truncation error. This suggests that for the node-based scheme, the truncation error is
reliable estimate of the solution error.

Further analysis of the solution error data of Fig. 3 indicates that the solution error vai
like h%9867: even eliminating the results for the largest maximum cell sizes still returr
second-order accuracy of the solution error; i.e., the solution error varies like the squar
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FIG. 3. Error distribution versus maximum cell size for the node-based grid.
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FIG. 4. Ratio of truncation error to solution error for the node-based grid.

the maximum cell size. Therefore, even though the scheme appears to be formally first-o
accurate on a nonuniform grid from the Taylor series analysis, the solution error shows
it is in fact second-order accurate.

We now turn to the cell-centred approximation. In Fig. 5 we see the results for the :
lution error and truncation error again plotted against maximum cell size. The truncat
error results do not decrease with reducing cell size, confirming the Taylor series an:
sis. However, the solution error results do decrease as the maximum cell size reduce
contradiction to the conclusion drawn from the analysis. As a result the ratio of truncati
error to solution error varies significantly as the cell size is reduced (Fig. 6). Analysing t
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FIG. 5. Error distribution versus maximum cell size for the cell-centred grid.
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FIG. 6. Ratio of truncation error to solution error for the cell-centred grid.

variation of the solution error as the cell size changes shows that the solution error for
cell-centred scheme also varies with the square of the cell size. Therefore, in contra
the conclusion drawn from the Taylor series analysis we can sathinaell-centred finite
volume approximation is not only consistent but is second-order accurate even on tf
nonuniform grids

5. AN ALTERNATIVE ANALYSIS OF THE CELL-CENTRED METHOD

We now turn to an alternative analysis of the cell-centred finite volume method. TI
follows the approach used byus[6] for the node-based grid case, extending it to the
cell-centred method and showing how it is confirmed by numerical experiments.

We restate the finite volume approximatiorudds follows: LetS" be the set of piecewise
bilinear functions defined on the rectangular partiti0|§_2dhduced byﬁ“. Let % c S'be
the set of those functions vanishing@f. The finite volume approximation afisu" e S)‘
satisfying

1 9 h 1 Xit172  [Yj+1/2
/ M s = / / " ik, y)dx dy (20)
dawij «

hi kJ . an B hlkl JXi—12 JYj-172

for (x,y) € Q".

5.1. Stability Analysis

In this section we shall demonstrate the stability of the finite difference analogue of «
finite volume approximation, which in turn demonstrates the stability of the finite volun
scheme.

5.1.1. Some definitionsLet us define the discretd!-norm|| - ll1h as

1/2
llpn = (012 + w2 )2 (21)
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where|| - || is the discreté,-norm overQ",

vl = (v, v)"/? (22)
M-1 N—l_ _
(v, w):ZZhikjvijwij, (23)
i=1 j=1

and| - |, is the discreteH *-seminorm,

lyn = (1A5 012 + 1145 012) ", (24)
where we have
vll% = (v, vl (25)
w3 = . v]y (26)
M N-1 .

W, wly =Y hikjvijwy; (27)

i=1 j=1

M-1 N

(v, w]y= ZZHikjvijwij. (28)

i=1 j=1
We define the divided difference operataxg, AL, AY, Ay as

_Uigaj — Ujj

Afu= —h (29)
Au= U.,—hitlm (30)
Aju = “"”i(j i 31)
Aju= “”_kij"’*l (32)

We define the discretel ~1-norm as

[(v, w)|
lol_y = sup! (33)
lwllyp

where the supremum is taken over all mesh functiong 0 on Qh vanishing omQ".

5.2. Stability Analysis of an Equivalent Finite Difference Method

Using the definitions of the previous section we may rewrite the finite volume appro:
mation given by Eq. (20) as a finite difference schem&8n

—(AFA + ATAHU =T inQh (34)
uh=0 onaQh, (35)
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where we have

1 Xi+12 fYj+1/2
Tty = £ / / F(x, y) dx dy (36)
(A

Xi—172 JYj-172

Let us define the operatdl" by
LM = —(AF AL+ AJAY Y (37)

for mesh functions defined on" with v = 0 onaQ". Then if we take the inner product
of £y with v we get

(LM, v) = (—=(AF A, V) + (—=(AF AV, v)

M—lN—l__ M—-1N-1
= Z Zhikj(—ArA;vij)vij + i j(—A;A;vij)vij
=1 j=1 i

Il
AN
Il
AN

M—1N-1 - -
o A=Vl — A= Ui
+ Z hik; (— y L) y 1 )vij. (38)

M-1N-1
L Ay Vi+1,j — Ay Vi
hi i\~ Vij
i—1 j=1 hi
N—-1
_ V2,j — V1,j V1,j — Vo,j V3,j — V2 V2,j — V1,
=§ j\—— V1)t ———Vv1j — v+ v2jt
h ’ h ' h ' h ’
= 2 1 3 2

= V1,j — Vo,j V2,j — ULj
=Y kit ———(v1j —voj) + ——— (v —v1)) + -
h2 h2
=1

Il

=
=
ol
=

>
x|
=
=
=

>
x|
=
=

= (A v, A v]x, (39)

where we have used the fact thgt; = 0 andvy j = 0 by definition. A similar analysis
gives

hi J(_ y Vi+l] y Yij )Uij = (A;U, A;U]y (40)
J
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and so we immediately have
(LM, v) = (Ayv, AL v]x + (Ayv, A;v]y
= AL vlIE + 1Aj TS
= |v|ih ’ (41)

where we have used the definitions of Eqgs. (24), (25), and (26).
In addition, sincey = 0 ondQ" then, using Lemma 3.2 in [6], we obtain the relation

1
lvll® < > lvIgh. (42)
giving
2 1 h
and therefore
12 3 1/2
lollen = (vl + vlf,) 7 < (5 |v|ih) , (44)
immediately yielding
3
IoIin < 5L, v). (45)
Now the H ~1-norm of L"v is defined, for some, by
h
LM 1 = Sup—
Ic" | (LM, w)] 46
lwllh
Sincev = 0 ond2" we may say that
(LM, v) < [0llgn 1L —1n (47)
and finally
3 h
lvllin < §||£ v|l—1h. (48)

This negative norm result indicates that the finite difference method is stable and he
so is the finite volume method by the following analysis.

For the finite difference method to be stable, we reqyigé™) || to be uniformly
bounded. From Eq. (48) we have demonstrated|thif |, < Cl||£Mv]||_1.h for someC > 0
for mesh functions and so this implies the uniform boundednesg| £")~2|| (see for
example [7]).

Uniqueness of the solution follows by application of Theorem 3.2 from [6].

To estimate a bound af', we setv = u" in Eq. (48), sincai™ = 0 onaQ", to give

3
luMon < E||,c"u"||_1,h (49)
and so

3
IuMlon < SITuflloan. (50)
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5.3. Convergence Analysis

In this section we shall demonstrate the convergence of the finite volume scheme. In
analysis we shall use the concept of anisotropic Sobolev spaces on rectangular subdor
of R?, whereR is the space of real numbers. Let= (a, b) x (c,d) and letr,s € R,
with r, s > 0. ThenH"3(w) is the anisotropic Sobolev space consisting of all function
U € La(w) such that

d 1/2
|U|H’*°(w) = {/ |U(-, y)||2-|f(a,b) dy} < o0 (51)
C
172

b
[UlHos) = {/ [u(x, ~)|,245(C,d>dx} < 00. (52)
a

We note thaH"3(w) is a Banach space equipped with the norm

vz

2 2
”u”H’-s(w) = {||U|||2(w) + |U|Hr,0(w) + |U| OS(w)} (53)

Let us define the global error in the approximatiorzas u — u". Then

—(ATAL +ATADZ= —(ATAL + ATAD) U U
= —(AYAL + AJA DU — Ty f
d%u 9%
— + A~ +A—
=T (8)(2 + 3—y2> — (AY AL +A7A)U

Pu Pu
T]_l——A A + Tllay A A u (54)

Now from the definitions,

( Xit12  fYj+1/2 82 d )
Tii— > / / xay
3)(2 Xi—1/2 Yj-1/2

1 Yi+1/2 au ou

~1/2

au
Tor— | , 55
x( 013X)ij ( )

P

where we defindy; by

1 Yj+1/2
(Tow)ij = E/ w(Xi—12, y) dy. (56)

Yj-1/2

We may defin€l;, in a similar way from analysis of thél119%u/dy?);; term.
We may therefore write the equation for the global error as

—(ASALHATADZ= A+ AT, inQ (57)
z=0 onaQn, (58)
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where
_du -
m=Too —Acu (59)
_du -
2= Tiog, — Ayu. (60)

Applying the estimates derived in the stability analysis gives

3
1Zllan < §||Ai771 + Ay n2ll -1 (61)

Now if w is a mesh function defined &2" such thaty = 0 ondQ" then

M—1N—
—(Am+ Ay w) == 3 Z XM+ Ayn2)ijwij
i—1 j=1
N-1
= J{((nl)ZJ (nl)l,j)w]_,j + ((7’]1)3’1' — (nl)z'j)wij + .. }
=1
M-1
— > hi{(m2)i2 — m2)i.Dwi1+ ((M2)i3— M2iDwiz2+---}
i—1

Il
MH

EJ {1 (w1 — wo,j) + (712, (waj — waj) + -}
j=

Zl—‘
[y

+ Z hi{(72)i 1(wi 1 — wi0) + (2)i 2(wi 2 — wig) + - -}

M ON-1 M-1 N
Zzh Kj(n)ij Ay wij + Zhikj (m2)ij Ay wij
i=1 j= i=1 j=1

From the definition of the norm- ||_1,» we may see that

A%+ AYn2ll-1n < Imallx + lIn2lly (63)

and so

3
Izll1h = lu—u"|ph < S (UImllx + In2lly)- (64)

We must now estimate the RHS terms in Eq. (64). Let us consider; ttegm first:

1 [Yi+2 gu Uij — Ui—1,j
ij = — — (Xi_y2. y) dy— ————=1
N1)ij kj - 3X( i—1/2 y) y hy
1 [Yi+2 3u 1 (% du
= — — (xi_ dy— — — nd
<) ax(x' 12, y) dy h /Xil 3y 6 Vi) dx

Yj+1/2 au
oy —(x,y->}dxdy. (65)
hk,//m{ Xi-172.Y) ax
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If we split 1 asn1 = n11 + n12, where

1 X Yi+1/2 au
() = W / / { (32 Y) = o, yj)} dxdy  (66)
JXi—1/2 -1/2

Xi—1/2  fYi+1/2 du
(n12)ij = / { Xi—1/2,Y) — 87(X’ Yj)} dxdy, (67)
Yj

-1/2

then we must estimate the terms andnqo.
Let us first considen;;. We may change variables so that

X = Xi_1/2 + shi, Osss% (68)
— 1 1
y =Y;j +tkj, _EStSE (69)
and define the function by
i(s,t) = h (x y). (70)
Then
172 ,1/2 o
(7711)”- = hk / /1/2{—1)(0 t)——U(S O)}h|deSdt
172 p1/2
= 2/ / {3(0,t) — ¥(s, 0)} ds dt
h 1/2
= hzml, (71)
where
12 ,1/2
1 =/ / {¥(0,t) — T(s, 0)} ds dt (72)
0 —1/2

Now 713 is a linear functional (i.e., a linear mapping to the real numbers) with argument
defined onH’ (®) (with o > 1/2) where

o= (02) < (-11) -

Sinceo > 1/2, we may viewni; as a Trace operator, a continuous linear map, fror
H? (@) — R and so

~ - 1
111l < Cliollpozy, o > > (74)
since| - | is the norm orR (see [7], Section 8 and Theorem 8.1). TherefpreiS bounded

(v must remain finite) and sublinear (that ig, increases at best as rapidly as its ar-
gumentv}.
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We have now established the properties required to allow us to apply Theorem 4.2 fr
[6] to obtain

~ ~ ~ 12 1
sl < C(10ee ) + 1200) * 0 5 <0 =2 (75)
By definition of the Sobolev seminorms we have
1/2
|U|H00(u)) = / |17(S, ')||2_|(7(_1/2,1/2) dS (76)
0
2 12 2

9GS, )b 172172 = /1/2|va| dt, 7

whereDy is the generalised derivative of ordemith respect td. Now changing back to
the original variables gives

u(s, ) = h (x y) (78)
dx = hi ds (79)
dy = EJ- dt, (80)
and so
o~ o [ 0U
Dy v = hik; Dy <&> . (81)
This gives us
h.ZE?U Yj+1/2 Ju 2
~ia 26 _ i pe (22 dy. 82
[0(S, e —1/2.1/2) —kj /y, . y(ax> y (82)
and so
h.ZE?U Xi Yj+1/2 au
191200z = / / D’ ( ) dx dy (83)
e h k Xi—1/2 Y Yj-1/2 ax
h Ez (84)
B hi aX HO'”(w‘T) ’
wherew;) = (Xi—1/2, Xi) X (Yj-1/2, Yj+1/2)-
In a similar way, we obtain
1/2
|v|H”0(w) - / “}(a t)||2-|a(071/2) dt (85)
—1/2
2 172 2
|T)(.’t)|HU(O,l/2) = / |Dg5| dS. (86)
0

Returning to the original variables again gives

- 5 [ 0U
DI = hih! DS (5) , (87)
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yielding
h?h? % ou|*
B DR =;/ D¢ (—) dx, 88
H?(0,1/2) hi X 12 X\ 9x ( )
and so
h2h%° % Yi+1/2 au
B0, = AL / / D° ( ) dx dy (89)
H*%@) hikj Xi—172 JYj-172 9x
h2h? =1 | u|? (90)
k] X H”*O(wi}r)’
wherew; = (Xi-1/2, ) x (¥j-1/2, ¥j+1/2) again. Therefore
1. 20—1 0=
e < (M | R u (1)
1l = hi 3X HO'”(a)ier) kJ aX HG'O(CUH) ’
and so
ZEZU_]' 2 20+1
au h; ou|?
l(nijl? < C 9% . 2
i h2 0% | oo ) hizk] X oo

If we now turn our attention ton;2);; then we may change variables to

— 1

X = Xi_1/2 + shi_a, —55350 (93)
— 1 1
=y + tk; ——<t<= 94
y y] + I 2 =t= 2 ( )
and again define the functianby

i(s, 1) = h. (x y). (95)

We therefore arrive at an analogous estimate;fer
|( ) | < c HZ EZU 2 aU Elzil—‘rl ou 2 (96)

n12 — o )
' h2 ax HOw () h?k; |dx He 0

wherew;; = (Xi-1, X| 172) X (Yj—1/2, ¥Yj+1/2)-

If we IetwIJ = ;] U w;; then we have = Ujj wij . Now the square of the Sobolev semi-
norm displays the property of super-additivity; saif, », are mutually disjoint Lebesgue
measurable sets then

2 2 2
[UTHes () + 1UTRrs@y) = IUTHrs @) - o7
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Therefore
au? aul? aul?
Z 37 37 =< 37 (98)
] X1Hoo @) X1Hoo ) X|Hoo(g)
aul? aul? au?
S +]= < | . (99)
i,j aX H“‘O((ui}r) aX HU.O(wi*j) aX HJ,O(Q)

Now sinceni;, n12 represent integrals over disjoint sets whose union represents t
domain of integration for;, we have

In11? = [n11l® + In121%, (100)

and so from Egs. (92) and (96) we obtain

) |2<CE,?U_1 R2 au? au?
nijl= < . = 1=
hekj \ " o HO< (o) *ax HOo ()
1 yi1| U ? yi1|ou?
+Cp (HZ i (bl it ) (101)
hek; X Ho0ih) X Ho0w;)
From the definition of| - ], we have
M N-1 o
InallZ = hikj (07 (102)
i=1 j=1
and so
M N- 1 1,201 2 2
2 — |ou
Imllg =C a (h 1o )
" ; j=1 h lax HO () X HOe ()
M N-1 2
1 _2<7+1 3U 2041 | 0U )
+C — h”1 | —
1 20+1 2 2
h au au
<ct (|& = : (103)
h 3X HO'"(Q) 3X H”‘O(Q)

Whereﬁ_z max,j(ﬁi,ij) and h = max ; (h;). We may, in fact, go further and &t =
max(h, h) and then set

2 2
a2 < chee (|2 ou : (104)
X oo (g IX | yoo(q)
Similarly, we may determine that
2 2
7212 < chee [ |2 ou (105)
ay HO’”(Q) ay Hn.O(Q)
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if we defineh = max j (h, k;, h;, k). From the definition of the norm on the anisotropic
Sobolev space

du? au|? ou
— — ’ (106)
BX HO,U(Q) 8X Ho,O(Q) 3X Hna(Q)
aul? dul? au
- - ’ (107)
Y [Hoo () 19Y [Hoo() Y oy
But sinceo > 0 we haveH?? () = H?(Q) and|| - | oo gy = || - |4o (o)) cONsequently
au 2
1112 < Ch® ™ (108)
XTHe @)
au
2112 < Ch® , (109)
ay He ()
and thus we have
~ au au 1
Ju— wun < CR ‘ du ‘ du Clis<a

whereC is some constan€ > 0.
We therefore have a bound on the error in terms of the derivativeswé would like to
express this bound in terms of a normudfself. We will now reexpress Eq. (110) in this way.
From the definition of the Sobolev seminorm, recalling f2at (0, 1) x (0, 1), we have

au? _/ 8u( %) dy
3X H”'D(Q) 0 3X H7(0,1)
1
=/ > |p —(x y) dy
o | s X L2(0,1)
=/ dx dy
|lo|=0
dxdy
|ot\ o
dQ
|la|=0
Jull?
=y o
lerl=0 XLz
aul?
= F . (112)
Ho(Q)
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Similarly we obtain

2 2

ou au

— =|— (112)
8X HOAU(Q) 3X HH(Q)
with similar relations for the seminorms é; In addition,
aul? du|?
ur v / o= g
3X HU(Q) ‘a‘=a Q BX
— Z / |D1+Oéu|2dQ
la|=0 2
= |u||2-|1+a(Q) (113)
and
au|?
— = U310 g - (114)
3y | e (o) H1to ()
Therefore
< |aul?
Inil]? < Ch® | —
" X e (@)
= Ch? |u} 10 (q) (115)
~ |aul?
In2l]% < Ch* | —
Y Y 1o @)
= Ch? Ui g, - (116)
and so we finally conclude that
h o 1
||U —u ||]_,h < Ch |u|H1+“(Q) 5 é <o < 2. (117)

This result gives us a bound on the error of the finite volume approximation in terms
a norm of the exact solution itself. Since the exponent of the grid-spacing term is boun
away from 0 and the norm of the analytic solution is finite we may conclude that the er
will decrease to zero in the limit of zero grid spacing; i.e., the cell-centred approximati

is consistent.

We have therefore proved our central result on the consistency of the approximation
the next section we shall examine some numerical results that follow from this analysis

6. A TWO-DIMENSIONAL EXAMPLE

6.1. Analytic Solution

If we consider the model problem defined by Eq. (1) with Dirichlet boundary conditior

as in (2) then taking = 272 sin(zx) cogy) and2 = (0, 1) x (0, 1) gives the analytic
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solution
u(x, y) = sin(x) cogmy). (118)

Given this solution we may calculate the seminguiy .., for the casesr =1 and
o = 2; these are easily shown to be

3
U2 =r? 2 (119)

and

Ulps) = 7. (120)

6.2. Numerical Results

In the calculations randomly distributed Cartesian grids have been used to solve
model problem. We have allowed a random number of grid lines to be distributed at ranc
locations to avoid any bias of the results from choosing particular nonuniform grid dist
butions. A total of 1000 cases have been calculated to provide a reasonable sample
As for the one-dimensional case there were no constraints on the maximum to minirr
cell-size ratio. In each case we have calculated the maximum cell size, which correspc
to hin Eq. (117). We have also calculated the maximum solution ¢rer u"|. and the
H1-norm of the solution erroffu — u"||1.n; we wish to demonstrate both that the analysis
predicts a behaviour of thel'-norm that is obtained in practice and that tHé-norm
behaves in a similar manner to the maximum norm. It is after all the maximum norm tha
usually calculated in assessing the accuracy of a numerical solution against known val

In Fig. 7 we plot the maximum solution error against the maximum cell size. We ¢
see that as the cell size decreases the solution error decreases as well with all of the
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FIG. 7. Two-dimensional example showing variation of maximum solution error with maximum cell size.
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FIG. 8. Two-dimensional example showing variationtéf-norm with maximum cell size.

points clustered around one line. Strangely this distribution appears smoother than
corresponding result in the one-dimensional case (Fig. 5), although the procedure is
same in both one- and two-dimensional cases. Calculating a best-fit line from the ¢
yields that the solution error varies wittt 728, a convergence rate slightly degraded from
the one-dimensional case considered above but still close fi?tbenvergence expected
from the uniform grid case. This is in contrast to the prediction of the truncation err
analysis using Taylor series expansions presented in Section 3.2 where the approxim:
is apparently inconsistent.

Calculating theH *-norm of the solution error for each example gives the results in Fig. ¢
We can see that thie 1-norm tends to zero as the maximum cell size reduces. Applying
best-fit curve again shows that the calculations predicttherorm varying withh1039%,
TheH!-normtherefore converges as the grid size decreases. This exponent on the maxit
cell sizeisinthe range predicted by the convergence analysis and so confirms the correc
of the approach in Section 4. With the approximatiomof 1 in Eq. (117) and the value
of |uly2q) from Eqg. (119) we can also calculate a bound on the con§tale plot the
limiting value ofC to give equality in Eq. (117) in Fig. 9. We see that, apart from one outlie
point atC ~ 0.17, we can estimate a limit & ~ 0.12 for this problem. We can see tt@t
does not change with grid size as expected.

7. DISCUSSION

The results of the numerical example presented in the previous section have confiri
the theoretical analysis. The!-norm of the solution error does indeed converge to zer
as the maximum cell size decreases and at a rate consistent with the range predicte
the analysis. Although thel*-norm of the solution error converges less rapidly than the
maximum norm shown in Fig. 7 we still have a useful indication of the error behavio
of the approximation. In particular we have presented an analysis of the cell-centred fi
volume method which reflects the behaviour seen in numerical experiments such as tho
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FIG. 9. Two-dimensional example showing value of the constant in Eq. (117)owithl.

Section 3.2 and have confirmed it by example calculations. This analysis therefore prov
us with a firm theoretical foundation for the use of cell-centred grids for diffusion problen
While the familiar Taylor series truncation error analysis suggested that the method
inconsistent, which was not supported by numerical evidence of the convergence of
solution error, we have now been able to demonstrate the convergence of the approxim:
by more sophisticated means.

The question now arises of whether this analysis can be extended to more com|
convection—diffusion equations on more general grids. Some work has been performe
this area already:#i"has analysed the effects of grid distortion on finite volume methoc
in [5] and has examined the convection—diffusion equation in [4]. However, this work cc
centrated on the cell vertex finite volume method and was restricted to uniform rectang
grids with restrictions on the velocity field. Another analysis of the convection—diffusic
equation, this time with the cell-centred grid formulation and various upwind schemes
the convection terms, was presented in [3]. This analysis was again performed for unif
grids. An analysis of the convection—diffusion equation on nonuniform cell-centred gri
will require a more complex and lengthy exposition than that presented here for the diffus
equation.

8. CONCLUSIONS

We have presented a theoretical analysis of the cell-centred finite volume method
the diffusion equation in an attempt to explain the discrepancy between the converge
of the method observed in numerical experiments and the behaviour implied by the Ta
series truncation error analysis. By rewriting the finite volume method as an equivalent fil
difference method we were able to prove stability. By invoking concepts from functior
analysis we were able to demonstrate convergence of the methodHit therm. Together
these results give the consistency of the method. We were able to demonstrate the acc
of the theoretical analysis by a numerical example which yielded superlinear converge
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of both the maximum norm and thieé-norm of the solution error; théi'-norm result
confirms the theoretical analysis. While more work is required to extend this approc
to the convection—diffusion equation on nonuniform cell-centred grids the present w
is valuable because it provides a theoretical underpinning to the evidence of numer
experiments, showing that the cell-centred method is consistent for the diffusion equa
in contrast to the results of Taylor series truncation error analysis.
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